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KimTree: dealing with ascertainment bias and selection using SNP data

L Introduction

KimTree: Gautier and Vitalis, 2013

Assumptions:

@ known population history (tree topology)

@ AF evolve according to WF-model (pure-drift process)
@ SNPs are segregating independently in root population
@ parameter of interest: 7; = t;/2N
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KimTree: dealing with ascertainment bias and selection using SNP data

L Introduction

KimTree: Bayesian Framework

. or ~ Beta(1,1)
T~ Unif{(0,10)

7(0t|Olanc,T ) ~ Diff. Approx.

Y ~Binom(a,n) P2

Mathieu Gautier, and Renaud Vitalis Mol Biol Evol
2013;30:654-668 4/36



KimTree: dealing with ascertainment bias and selection using SNP data

— Introduction

Performance of the Kimura model for estimating branch lengths in population trees.
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L Introduction

Tataru et al., 2015 - beta with spikes model

@ f(x;t) = P(X; = x|Xo = Xo)
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L Introduction

Tataru et al., 2015 - beta with spikes model

@ f(x;t) = P(X; = x|Xo = Xo)

xt=1(1—x)Bt—1

@ approximation: fg(x;t) = By [0,1]
@ «; and f; are determined by mean and variance
@ introduce spikes 6(x) for loss and fixation probabilities
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KimTree: dealing with ascertainment bias and selection using SNP data

L Introduction

Tataru et al., 2015 - beta with spikes model

@ f(x;t) = P(X; = x|Xo = Xo)

@ approximation: fz(x;t) = %, [0,1]

@ «; and f; are determined by mean and variance

@ introduce spikes §(x) for loss and fixation probabilities
fa(x; t) =

P(X: = 0)d(x) +
P(X;=1)5(1 —x) +

P(X; ¢ {0, 1})%
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KimTree: dealing with ascertainment bias and selection using SNP data

— Introduction

Tataru et al., 2015 - beta with spikes model vs KimTree

A Simulations: B(1.0,1.0) B Simulations: chimp exome B(0.0188, 0.0195)
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KimTree: dealing with ascertainment bias and selection using SNP data

LAscerta\nmem bias due to SNP data

Ascertainment bias due to SNP data
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KimTree: dealing with ascertainment bias and selection using SNP data

LAscerta\nmem bias due to SNP data

Problem: mutations that get lost or become fixed in all populations
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KimTree: dealing with ascertainment bias and selection using SNP data

LAscerta'\nmem bias due to SNP data

Full data check: 5000 markers simulated under the inference model
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KimTree: dealing with ascertainment bias and selection using SNP data

—Model improvements

1st approach - flexible Beta(a,b)
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KimTree: dealing with ascertainment bias and selection using SNP data

—Model improvements

Full data vs SNPs: flexible Beta(a,b)
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KimTree: dealing with ascertainment bias and selection using SNP data
L Model improvements
P!

2nd approach - conditional likelihood

o [[; L(Yi;®©lpoly;) =[I; L(Yi:©)/P(poly,|©)
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KimTree: dealing with ascertainment bias and selection using SNP data
L Model improvements
p

2nd approach - conditional likelihood

o [[; L(Yi;®©lpoly;) =[I; L(Yi:©)/P(poly,|©)

e P(poly;[©) =1—P(Y™ =0|e) — (Y™ =1]0)
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KimTree: dealing with ascertainment bias and selection using SNP data

—Model improvements

Coalescent theory

P(0,0,0)=2« BetaBinom(0,k,a,b)P(k)
P(1,1,1)=5« BetaBinom(k,k,a,b)P(k)

k:2..n1+n2+n3

P(As] | Ao=i) = gi(t) (6.1/6.2) Tavaré (1984

n1 n2 n3
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KimTree: dealing with ascertainment bias and selection using SNP data

—Model improvements

Full data vs SNPs: conditional likelihood

Beta(1.0,1.0)
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KimTree: dealing with ascertainment bias and selection using SNP data

—Model improvements

Tataru et al., 2015: KimTree vs beta with spikes model

chimp data B(0.0188, 0.0195):
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model improvements

KimTree: Limitations

@ divergence times are in a diffusion time scale
@ model does not use LD information

@ model assumes no mutations after MRCA
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L Application

Application: estimation of sex-ratios
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LApplicat\on

Application: estimation of sex-ratios - Definitions

N

effective sex ratio: p := =7
e e
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L Application

Application: estimation of sex-ratios - Definitions

N

effective sex ratio: p := =7
e e

@ monogamy: E[p] = 0.5

@ polygamy
» polygyny: E[p] > 0.5
» polyandry: E[p] < 0.5
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KimTree: dealing with ascertainment bias and selection using SNP data

L Application

Application: estimation of sex-ratios

contribution of males and females to strength of genetic drift
differs on autosomes and sex-chromosomes

o if Nf = NT = NX = SNA NY = INA

e
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L Application

Application: estimation of sex-ratios

contribution of males and females to strength of genetic drift
differs on autosomes and sex-chromosomes

o if Nf = NT = NX = SNA NY = INA

A _ ANINZ X _ _9NINT .

(") Ne Nf+Nm, Ne = m Crow & Kimura (1971)
NG 9 , _ N
® V= =2 e AT W
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KimTree: dealing with ascertainment bias and selection using SNP data

L Application

Application: estimation of sex-ratios

contribution of males and females to strength of genetic drift
differs on autosomes and sex-chromosomes

o if Nf = NT = NX = SNA NY = INA

A _ ANINZ X _ _9NINT .

(") Ne Nf+Nm, Ne = m Crow & Kimura (1971)
NG 9 , _ N
® V= =2 e AT W

H . t . .
@ KimTree: TA= ana> TX = ango A = 0%
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KimTree: dealing with ascertainment bias and selection using SNP data

L Application

Results

Scenario 1: NL + NI = 1000, 50 data sets of 5000 SNPs for A and X
(IBD_sex, Vitalis et al., in prep.)

p1=0.5

Ps=0.5

02=0.5

p3=0.5

1 rho3

B(a,b)+CL:

1 rhol

rho 2

rho 4
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KimTree: dealing with ascertainment bias and selection using SNP data

L Application

Results
Scenario 2: NL + NI = 1000, 50 data sets of 5000 SNPs for A and X
(IBD_sex, Vitalis et al., in prep.)
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KimTree: dealing with ascertainment bias and selection using SNP data
L Application

Results

Scenario 3: NL + NI = 1000, 50 data sets of 5000 SNPs for A and X
(IBD_sex, Vitalis et al., in prep.)

p1=0.5

Py
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KimTree: dealing with ascertainment bias and selection using SNP data
L Application

Results

Scenario 4: NL + NI = 1000, 50 data sets of 5000 SNPs for A and X
(IBD_sex, Vitalis et al., in prep.)
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KimTree: dealing with ascertainment bias and selection using SNP data

L Application

Sex-ratio estimation: Limitations

@ A and X-linked variation depend on:
» population size changes rool and Nielsen, 2007

» positive selection, background selection Hammer etal, 2008
» sex-specific migration

» sex-specific mutation rates vabuda et al, 2010
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L Application

Sex-ratio estimation: Limitations

@ A and X-linked variation depend on:
population size changes pool and Nielsen, 2007

v

v

positive selection, background selection Hammer et al, 2008

v

sex-specific migration

v

sex-specific mutation rates Labudaetal, 2010

@ methodological differences (Fg VS ) emeryetal, 2010
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KimTree: dealing with ascertainment bias and selection using SNP data

L Application

Sex-ratio estimation: Future perspective

o test effects of population size changes and demographies in
general

@ apply model to real data
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model extension: detection of selective sweeps

Model extension: detection of selective sweeps
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model extension: detection of selective sweeps

Selective Sweep

Before sweep

——
e ——
A
B

New mutation
B ]
_—

'4 X

No recombination Recombination

sweep , " A

Complete sweep =

a
i

Nature Reviews | Genetics

Nature Reviews Genetics 8, 857-868 (November 2007)
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model extension: detection of selective sweeps

Selection model: Chen et al. (2010), Genome Research

@ Nicholson model: f(x) = ﬁe(xgﬁ , 0% = wpo(1 — po)
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model extension: detection of selective sweeps

Selection model: Chen et al. (2010), Genome Research

; (x—pp)?

@ Nicholson model: f(x) = 5—e 22, 02 = wpo(1 — po)

@ joint effect of selection & recombination: smin & Haign (1974)
» Xag = 1 — C+ CXp; XaB = CXp

> C%'I—q(r)/s
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L Model extension: detection of selective sweeps

Selection model: Chen et al. (2010), Genome Research

(x—pp)?

@ Nicholson model: f(x) = ——e z* , 0% = wpo(1 — po)

@ joint effect of selection & recombination: smin & Haign (1974)

> XAB:1—C+CXO;XaB:CXO

> C%'I—q(r)/s

(P17, 5.pas0) =
(py+c—1—cpp)?

1 pitec— 1 M e 1 ¢
210 p1 C2 26252 |[1_Cv1](p1 ) + ono 02p1 e 2620 I[O C] (p1 )
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model extension: detection of selective sweeps

KimTree with selection (simplified model)

Beta(1,1) ar Yr Binom(ar,n)

exp(1)  Unif(genome)

ONO

T Unif(0,10)
c:=1-exp(-Alpi-psl)

f(x lar,c,T) =
1x[0,c)/c2 (c-x) T(Xo lar, T) +
Ix[1-c,1]/c2 (x+c-1) Ti(Xo |y, T)

Binom(x,n)
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KimTree: dealing with ascertainment bias and selection using SNP data

LModel extension: detection of selective sweeps

SLiM: Simulating Evolution with Selection and Linkage phiipp w. Messer, 2013

@ Neutral phase:

» 10000 generations

» locus L = 100000 bp

» effective popSize N, = 1000

» mutation rate y = 2.5 — 6

» recombination rate r =2.5e — 5
@ Selection phase:

» 101 generations

» poss = 50000

» selection coeff. s =5

» mutationrate =0
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KimTree: dealing with ascertainment bias and selection using SNP data

LModr—)l extension: detection of selective sweeps

SLiM: time series data

before sweep: after sweep:
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KimTree: dealing with ascertainment bias and selection using SNP data

—Model extension: detection of selective sweeps

Results: 50 posterior means

time pos_s lambda
% 4

° - 8

2 2 D &1
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model extension: detection of selective sweeps

Selection Model: Future perspective

ar ~ Beta(a,p)

T~ Unif(0,10) - @1 °

1(0l|0tane,T ) ~ Diff. Approx.

f(x ldanc,C,T) = |

1x[0,c)/c2 (c-X) T(Xo |Qanc,T) +
Ix[1-c,1]/c2 (x+c-1) Ti(Xo |Qanc,
|

A ~exp(1)
. &y
ps ~ Unif(genome)
T g bé
c:=1-exp(-Api-ps) o P2
(observed) fobosrved ¢

Y ~ Binom(o,n)
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KimTree: dealing with ascertainment bias and selection using SNP data

L Model extension: detection of selective sweeps

Selection Model: Future perspective

@ include information from fixed sites or LD
@ estimate strength of selection s and recombination rate r

@ apply model to real data
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