KimTree: dealing with ascertainment bias and selection using SNP data

Seminar at CBGP, Montpellier Florian Clemente, Mathieu Gautier, Renaud Vitalis

April 7th, 2016

Introduction: KimTree

- Introduction: KimTree
- Ascertainment bias due to SNP data

- Introduction: KimTree
- Ascertainment bias due to SNP data
- Model improvements

- Introduction: KimTree
- Ascertainment bias due to SNP data
- Model improvements
- Application: estimation of sex-ratios in populations

- Introduction: KimTree
- Ascertainment bias due to SNP data
- Model improvements
- Application: estimation of sex-ratios in populations
- Model extension: detection of selective sweeps

KimTree: Gautier and Vitalis, 2013

Assumptions:

- known population history (tree topology)
- AF evolve according to WF-model (pure-drift process)
- SNPs are segregating independently in root population
- parameter of interest: $\tau_i = t_i/2N$

KimTree: Bayesian Framework

Performance of the Kimura model for estimating branch lengths in population trees.

Tataru et al., 2015 - beta with spikes model

•
$$f(x;t) = P(X_t = x | X_0 = x_0)$$

Tataru et al., 2015 - beta with spikes model

- $f(x; t) = P(X_t = x | X_0 = x_0)$
- approximation: $f_B(x;t) = \frac{x^{\alpha_t 1}(1-x)^{\beta_t 1}}{B(\alpha_t, \beta_t)}$, [0,1]
- α_t and β_t are determined by mean and variance
- introduce spikes $\delta(x)$ for loss and fixation probabilities

Tataru et al., 2015 - beta with spikes model

- $f(x; t) = P(X_t = x | X_0 = x_0)$
- approximation: $f_B(x;t) = \frac{x^{\alpha_t 1}(1-x)^{\beta_t 1}}{B(\alpha_t, \beta_t)}$, [0,1]
- α_t and β_t are determined by mean and variance
- introduce spikes $\delta(x)$ for loss and fixation probabilities

$$f_{B}^{*}(X;t) = P(X_{t} = 0)\delta(X) + P(X_{t} = 1)\delta(1 - X) + P(X_{t} \notin \{0,1\}) \frac{X_{t}^{\alpha_{t}^{*}-1}(1 - X)\beta_{t}^{*}-1}{B(\alpha_{t}^{*}, \beta_{t}^{*})}$$

Tataru et al., 2015 - beta with spikes model vs KimTree

A Simulations: B(1.0,1.0) B Simulations: chimp exome B(0.0188, 0.0195)

Ascertainment bias due to SNP data

Ascertainment bias due to SNP data

Problem: mutations that get lost or become fixed in all populations

Full data check: 5000 markers simulated under the inference model

1st approach - flexible Beta(a,b)

Full data vs SNPs: flexible Beta(a,b)

2nd approach - conditional likelihood

•
$$\prod_i L(Y_i; \Theta | \mathsf{poly}_i) = \prod_i L(Y_i; \Theta) / P(\mathsf{poly}_i | \Theta)$$

2nd approach - conditional likelihood

•
$$\prod_i L(Y_i; \Theta | \mathsf{poly}_i) = \prod_i L(Y_i; \Theta) / P(\mathsf{poly}_i | \Theta)$$

•
$$P(\text{poly}_i|\Theta) = 1 - P(Y_i^{(N)} = 0|\Theta) - P(Y_i^{(N)} = 1|\Theta)$$

Coalescent theory

Full data vs SNPs: conditional likelihood

Tataru et al., 2015: KimTree vs beta with spikes model

chimp data B(0.0188, 0.0195):

KimTree: Limitations

- divergence times are in a diffusion time scale
- model does not use LD information
- model assumes no mutations after MRCA

Application

Application: estimation of sex-ratios

Application: estimation of sex-ratios - Definitions

effective sex ratio:
$$\rho := \frac{N_{\rm e}^{\rm f}}{N_{\rm e}^{\rm f} + N_{\rm e}^{\rm m}}$$

Application: estimation of sex-ratios - Definitions

effective sex ratio:
$$\rho := \frac{N_e^t}{N_e^t + N_e^m}$$

- monogamy: $E[\rho] = 0.5$
- polygamy
 - polygyny: $E[\rho] > 0.5$
 - polyandry: $E[\rho] < 0.5$

Application: estimation of sex-ratios

contribution of males and females to strength of genetic drift differs on autosomes and sex-chromosomes

• if
$$N_e^f = N_e^m \Rightarrow N_e^X = \frac{3}{4}N_e^A, N_e^Y = \frac{1}{4}N_e^A$$

Application: estimation of sex-ratios

contribution of males and females to strength of genetic drift differs on autosomes and sex-chromosomes

• if
$$N_e^f = N_e^m \Rightarrow N_e^X = \frac{3}{4}N_e^A, N_e^Y = \frac{1}{4}N_e^A$$

$$\bullet \ \ N_e^A = \frac{4N_e^fN_e^m}{N_e^f+N_e^m}, \qquad N_e^X = \frac{9N_e^fN_e^m}{2N_e^f+4N_e^m} \qquad \qquad \text{Crow \& Kimura (1971)}$$

$$\bullet \ \rho = \frac{N_e^f}{N_e^f + N_e^m} = 2 - \frac{9}{8\lambda}, \ \lambda = \frac{N_e^X}{N_e^A}$$

Application: estimation of sex-ratios

contribution of males and females to strength of genetic drift differs on autosomes and sex-chromosomes

• if
$$N_e^f = N_e^m \Rightarrow N_e^X = \frac{3}{4}N_e^A, N_e^Y = \frac{1}{4}N_e^A$$

$$m{N}_e^A = rac{4N_e^fN_e^m}{N_e^f+N_e^m}, \qquad m{N}_e^X = rac{9N_e^fN_e^m}{2N_e^f+4N_e^m}$$
 Crow & Kimura (1971)

$$\bullet \ \rho = \frac{N_e^f}{N_e^f + N_e^m} = 2 - \frac{9}{8\lambda}, \ \lambda = \frac{N_e^X}{N_e^A}$$

• KimTree:
$$\tau_A = \frac{t}{2N_e^A}$$
; $\tau_X = \frac{t}{2N_e^X}$; $\lambda = \frac{\tau_e^A}{\tau_e^X}$

Scenario 1: $N_e^f + N_e^m = 1000$, 50 data sets of 5000 SNPs for A and X (*IBD_sex*, Vitalis et al., in prep.)

Scenario 2: $N_e^f + N_e^m = 1000$, 50 data sets of 5000 SNPs for A and X (*IBD_sex*, Vitalis et al., in prep.)

Scenario 3: $N_e^f + N_e^m = 1000$, 50 data sets of 5000 SNPs for A and X (*IBD_sex*, Vitalis et al., in prep.)

Scenario 4: $N_e^f + N_e^m = 1000$, 50 data sets of 5000 SNPs for A and X (*IBD_sex*, Vitalis et al., in prep.)

Sex-ratio estimation: Limitations

- A and X-linked variation depend on:
 - population size changes Pool and Nielsen, 2007
 - positive selection, background selection Hammer et al, 2008
 - sex-specific migration
 - sex-specific mutation rates Labuda et al, 2010

Sex-ratio estimation: Limitations

- A and X-linked variation depend on:
 - population size changes Pool and Nielsen, 2007
 - positive selection, background selection Hammer et al, 2008
 - sex-specific migration
 - sex-specific mutation rates Labuda et al, 2010
- methodological differences (F_{st} vs π) Emery et al, 2010

Sex-ratio estimation: Future perspective

- test effects of population size changes and demographies in general
- apply model to real data

Model extension: detection of selective sweeps

Model extension: detection of selective sweeps

Model extension: detection of selective sweeps

Selective Sweep

Nature Reviews Genetics 8, 857-868 (November 2007)

Selection model: Chen et al. (2010), Genome Research

• Nicholson model: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\rho_0)^2}{2\sigma^2}}$, $\sigma^2 = \omega \rho_0 (1-\rho_0)$

Selection model: Chen et al. (2010), Genome Research

- Nicholson model: $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-p_0)^2}{2\sigma^2}}$, $\sigma^2 = \omega p_0(1-p_0)$
- joint effect of selection & recombination: Smith & Haigh (1974)
 - ► $x_{AB} = 1 c + cx_0$; $x_{aB} = cx_0$ ► $c \approx 1 q_0^{r/s}$

Selection model: Chen et al. (2010), Genome Research

- Nicholson model: $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-p_0)^2}{2\sigma^2}}$, $\sigma^2 = \omega p_0(1-p_0)$
- joint effect of selection & recombination: Smith & Haigh (1974)

$$X_{AB} = 1 - c + cx_0$$
; $x_{AB} = cx_0$

$$c \approx 1 - q_0^{r/s}$$

KimTree with selection (simplified model)

SLiM: Simulating Evolution with Selection and Linkage Philipp W. Messer, 2013

- Neutral phase:
 - 10000 generations
 - locus L = 100000 bp
 - effective popSize $N_e = 1000$
 - mutation rate $\mu = 2.5e 6$
 - recombination rate r = 2.5e 5
- Selection phase:
 - 101 generations
 - $pos_s = 50000$
 - selection coeff. s = 5
 - mutation rate $\mu = 0$

SLiM: time series data

Results: 50 posterior means

Selection Model: Future perspective

Selection Model: Future perspective

- include information from fixed sites or LD.
- estimate strength of selection s and recombination rate r
- apply model to real data

Thank you!

